4,908 research outputs found

    Compression of Martian atmosphere for production of oxygen

    Get PDF
    The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work

    Regularization of second-order scalar perturbation produced by a point-particle with a nonlinear coupling

    Full text link
    Accurate calculation of the motion of a compact object in a background spacetime induced by a supermassive black hole is required for the future detection of such binary systems by the gravitational-wave detector LISA. Reaching the desired accuracy requires calculation of the second-order gravitational perturbations produced by the compact object. At the point particle limit the second-order gravitational perturbation equations turn out to have highly singular source terms, for which the standard retarded solutions diverge. Here we study a simplified scalar toy-model in which a point particle induces a nonlinear scalar field in a given curved spacetime. The corresponding second-order scalar perturbation equation in this model is found to have a similar singular source term, and therefore its standard retarded solutions diverge. We develop a regularization method for constructing well-defined causal solutions for this equation. Notably these solutions differ from the standard retarded solutions, which are ill-defined in this case.Comment: 14 page

    Regularization of the second-order gravitational perturbations produced by a compact object

    Full text link
    The equations for the second-order gravitational perturbations produced by a compact-object have highly singular source terms at the point particle limit. At this limit the standard retarded solutions to these equations are ill-defined. Here we construct well-defined and physically meaningful solutions to these equations. These solutions are important for practical calculations: the planned gravitational-wave detector LISA requires preparation of waveform templates for the potential gravitational-waves. Construction of templates with desired accuracy for extreme mass ratio binaries, in which a compact-object inspirals towards a supermassive black-hole, requires calculation of the second-order gravitational perturbations produced by the compact-object.Comment: 12 pages, discussion expanded, to be published in Phys. Rev. D Rapid Communicatio

    Construction of the second-order gravitational perturbations produced by a compact object

    Full text link
    Accurate calculation of the gradual inspiral motion in an extreme mass-ratio binary system, in which a compact-object inspirals towards a supermassive black-hole requires calculation of the interaction between the compact-object and the gravitational perturbations that it induces. These metric perturbations satisfy linear partial differential equations on a curved background spacetime induced by the supermassive black-hole. At the point particle limit the second-order perturbations equations have source terms that diverge as r4r^{-4}, where rr is the distance from the particle. This singular behavior renders the standard retarded solutions of these equations ill-defined. Here we resolve this problem and construct well-defined and physically meaningful solutions to these equations. We recently presented an outline of this resolution [E. Rosenthal, Phys. Rev. D 72, 121503 (2005)]. Here we provide the full details of this analysis. These second-order solutions are important for practical calculations: the planned gravitational-wave detector LISA requires preparation of waveform templates for the expected gravitational-waves. Construction of templates with desired accuracy for extreme mass-ratio binaries requires accurate calculation of the inspiral motion including the interaction with the second-order gravitational perturbations.Comment: 30 page

    Changing the Marks Based Culture of Learning through Peer Assisted Tutorials

    No full text
    We describe and evaluate an approach to student learning that aims to instil a culture of formative assessment based on peer-assisted self learning, instead of a marks-based culture in which learning effort is rewarded with marks that contribute to the students degree. The idea is for suitably qualified third- and fourth-year undergraduates to assist in the running of weekly first-year tutorials. They mark submitted work, provide written and verbal feedback on the students performance and lead problem solving discussions during tutorials. However, contrary to normal practice, the marks they award do not contribute to the students year total; all tutorial work becomes essentially voluntary. We report results from a pilot implementation of the scheme over a 12-month period in an engineering department at a leading academic institution. The set-up of the scheme was such that a comparative and triangulated assessment was possible amongst the students and tutor team. There was no discernible degradation in student attendance, submission rates and performance in either the weekly exercises or end of year examinations. Further analysis demonstrates that this type of peer-assisted learning improves some key aspects of student learning, and provides important benefits to the senior peers in terms of their own personal development. We conclude that the scheme provides an excellent alternative to traditional learning methods whilst substantially reducing the investment in academic staff time. © American Society for Engineering Education, 2009

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    The role of remote sensing in the development of SMART indicators for ecosystem services assessment

    Get PDF
    Human beings benefit from a wide range of goods and services from the natural environment that are collectively known as ecosystem services. However, rapid natural habitat loss, overexploitation and climate change is causing accelerating losses of populations and species, with largely unknown consequences on ecosystem functioning and the sustainable provision of ecosystem services. It is crucial, therefore, to develop a suite of indicators of the health and status of ecosystems, to monitor and quantify services delivery and to facilitate policy responses to stop and reverse negative trends. An effective framework to facilitate the development of suitable indicators is by using the SMART approach, which defines five criteria that could be applied to set monitoring and management goals, which are Specific, Measurable, Achievable, Realistic and Time-sensitive. Remote sensing provides a useful data source that can monitor ecosystems over multiple spatial and temporal scales. Although the development and application of landscape indicators (vegetation indices, for example) derived from remote sensing data are comparatively advanced, it is acknowledged that a number of organisms and ecosystem processes are not detectable by remote sensing. This paper explores several approaches to overcome this limitation, by examining the strong affinity of species with dominant habitat structures and through the coupling of remote sensing and ecosystem process models using examples drawn from a number of important ecosystems

    Testing Alternative Theories of Gravity using LISA

    Full text link
    We investigate the possible bounds which could be placed on alternative theories of gravity using gravitational wave detection from inspiralling compact binaries with the proposed LISA space interferometer. Specifically, we estimate lower bounds on the coupling parameter \omega of scalar-tensor theories of the Brans-Dicke type and on the Compton wavelength of the graviton \lambda_g in hypothetical massive graviton theories. In these theories, modifications of the gravitational radiation damping formulae or of the propagation of the waves translate into a change in the phase evolution of the observed gravitational waveform. We obtain the bounds through the technique of matched filtering, employing the LISA Sensitivity Curve Generator (SCG), available online. For a neutron star inspiralling into a 10^3 M_sun black hole in the Virgo Cluster, in a two-year integration, we find a lower bound \omega > 3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6. The bound is independent of LISA arm length, but is inversely proportional to the LISA position noise error. Lower bounds on the graviton Compton wavelength ranging from 10^15 km to 5 * 10^16 km can be obtained from one-year observations of massive binary black hole inspirals at cosmological distances (3 Gpc), for masses ranging from 10^4 to 10^7 M_sun. For the highest-mass systems (10^7 M_sun), the bound is proportional to (LISA arm length)^{1/2} and to (LISA acceleration noise)^{-1/2}. For the others, the bound is independent of these parameters because of the dominance of white-dwarf confusion noise in the relevant part of the frequency spectrum. These bounds improve and extend earlier work which used analytic formulae for the noise curves.Comment: 16 pages, 9 figures, submitted to Classical & Quantum Gravit

    Design and implementation of a compliant robot with force feedback and strategy planning software

    Get PDF
    Force-feedback robotics techniques are being developed for automated precision assembly and servicing of NASA space flight equipment. Design and implementation of a prototype robot which provides compliance and monitors forces is in progress. Computer software to specify assembly steps and makes force feedback adjustments during assembly are coded and tested for three generically different precision mating problems. A model program demonstrates that a suitably autonomous robot can plan its own strategy
    corecore